You will find here some formulas written in MathML
`a = b^2 `
` {(S_(11),...,S_(1n)),(vdots,ddots,vdots),(S_(m1),...,S_(mn))] `
`e^x = 1+x+1/(2!)x^2 + 1/(3!)x^3 + cdots `.
`|x|= {(x , if x ge 0 text(,)),(-x , if x <0.):}`
A `3xx3` matrix,
`((1,2,3),(4,5,6),(7,8,9))`,
and a `2xx1` matrix, or vector, `((1),(0))`.
The outer brackets determine the delimiters e.g.
`|(a,b),(c,d)|=ad-bc`.
A general `m xx n` matrix
`((a_(11), cdots , a_(1n)),(vdots, ddots, vdots),(a_(m1), cdots , a_(mn)))`
Using the quadratic formula, the roots of `x^2-6x+4=0` are
`x = (-6 +- sqrt((-6)^2 - 4 (1)(4)))/(2 xx 1)`
`\ \ = (-6 +- sqrt(36 - 16))/2`
`\ \ =(-6 +- sqrt(20))/2`
`\ \ = -0.8 or 2.2 \ \ \ `to 1 decimal place.
`sum_(k=1)^n k = 1+2+ cdots +n=(n(n+1))/2`
`int_0^1 x^2 dx`
Note how the LaTex parsing has been turned off for this webpage
body {
/* background:$bgcolor; */ /* old code */
background:#d0e4fe; /* new code */
margin:0;
color:$textcolor;
font:x-small Georgia Serif;
font-size/* */:/**/small;
font-size: /**/small;
text-align: center;
}
Tuesday, April 13, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment